Son, junto con las bacterias, el otro grupo de “organismos” especialmente difícil de definir. En cuanto a su descripción, sí es más sencilla: son simplemente una cadena de ADN o ARN envuelta por una cápsula proteica. Los virus no crecen ni se alimentan. Sólo pueden existir porque se introducen en otras células y sus fragmentos de material genético utilizan las proteínas del huésped para hacer réplicas de sí mismos. Pero, la cualidad más especial es que, los retrovirus, que son virus ARN, una vez dentro de la célula se transcriben a ADN, que se inserta en el genoma del huésped, donde comienza a traducir sus secuencias correspondientes, es decir, su propia información genética, (los virus ADN se integran directamente). Hay que reconocer que estas dos capacidades, de difícil explicación desde el punto de vista de la teoría evolutiva ortodoxa, parecen diseñadas para introducir en los organismos secuencias complejas de genes. La observación, entre otras cosas, de los grandes y bruscos saltos en el registro paleontológico, y las diferencias de organización entre “clados” entre los que se puede comprobar una sucesión en dicho registro, como son reptiles y mamíferos, cambios que implicarían modificaciones en secuencias complejas del material genético, me llevó a la conclusión de que una forma posible de explicar esos fenómenos es la integración en el genoma de dichos organismos de secuencias provenientes de virus.
Lamarck y los mensajeros la función de los virus en la Evolución. Máximo Sandín, 1995.
Sólo figuran completos los artículos de libre acceso.
Todos los artículos aquí contenidos tienen el único propósito de informar al lector.
There´s only complete information for free access articles.
The content is provided for information purposes only.
Viroma humano y evolución.
Ribosomal profiling of human endogenous retroviruses in healthy tissues.
2024, Dopkins, N. et al.
Cooptación de secuencias virales endógenas para la función de la célula huésped.
2017, John A. Frank & Cedric Feschotte.
Horizontal acquisition of transposable elements and viral sequences: patterns and consequences.
2018, Clément Gilbert & Cédric Feschotte.
Apoptotic endothelial cells release small extracellular vesicles loaded with immunostimulatory viral-like RNAs.
2019, Hardy M-P., et al.
The gut’s ‘friendly’ viruses revealed.
2010, Amy Maxmen.
Massive expansion of human gut bacteriophage diversity.
2021, Camarillo-Guerrero, Luis F. et al.
Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery.
2021, Segel et al.
Polθ reverse transcribes RNA and promotes RNA-templated DNA repair.
2021, Chandramouly, G. et al.
Regulatory evolution of innate immunity through co-option of endogenous retroviruses.
2016, Edward B. Chuong, Nels C. Elde, Cédric Feschotte.
Retrovirus-like Gag Protein Arc1 Binds RNA and Traffics across Synaptic Boutons.
2018, James Ashley Benjamin, Cordy Diandra, LuciaLee G. Fradkin, Vivian Budnik & Travis Thomson.
Bacteriophage adhering to mucus provide a non–host-derived immunity.
2013, Jeremy J. Barra, Rita Auroa, Mike Furlana, Katrine L. Whitesona, Marcella L. Erbb, Joe Poglianob, Aleksandr Stotlanda, Roland Wolkowicza, Andrew S. Cuttinga, Kelly S. Dorana, Peter Salamonc, Merry Youled, and Forest Rohwera
Arc – An endogenous neuronal retrovirus?
2018, Shepherd, J. H.
The human gut microbiota and virome: Potential therapeutic implications.
2015, Emidio Scarpellini, Gianluca Ianiro, Fabia Attili, Chiara Bassanelli, Adriano De Santis, Antonio Gasbarrini
TRIM28 Represses Transcription of Endogenous Retroviruses in Neural Progenitor Cells.
2015, Liana Fasching, Adamandia Kapopoulou, Rohit Sachdeva, Rebecca Petri, Marie E. Jo¨ nsson, Christian Ma¨ nne, Priscilla Turelli, Patric Jern, Florence Cammas, Didier Trono, and Johan Jakobsson.
An enteric virus can replace the beneficial function of commensal bacteria.
2014, Elisabeth Kernbauer, Yi Ding & Ken Cadwell
The human gut virome: Inter-individual variation and dynamic response to diet.
2011, Samuel Minot, Rohini Sinha, Jun Chen, Hongzhe Li, Sue A. Keilbaugh, Gary D. Wu, James D. Lewis, and Frederic D. Bushman
The Crystal Structure of a Virus-like Particle from the Hyperthermophilic Archaeon Pyrococcus furiosus Provides Insight into the Evolution of Viruses.
2007, Fusamichi Akita et al.
A Hypothesis for DNA Viruses as the Origin of Eukaryotic Replication Proteins.
2000, Luis P. Villarreal & Victor R. De Filippis.
The Evolution of Placental Mammals.
1991, J. R. Harris
On Viruses, Sex, and Motherhood.
1997, Luis P. Villareal.
Identification of a viral gene encoding a ubiquitin-like protein.
1990, Linda A. Guarino
Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation.
2003, Frendo J.L., Olivier D., Cheynet V., Blond JL., Bouton O., Vidaud M., Rabreau M., Evain-Brion D., Mallet F.
Endogenous retroviruses regulate periimplantation placental growth and differentiation.
2006, Kathrin A. et al.
Telomeres in Evolution anda Developmento from Biosemiotic Perspective.
2005, Gunther Witzany
Protein coding potential of retroviruses and other transposable elements in vertebrate genomes.
2005, Evgeny M. Zdobnov, Monica Campillos, Eoghan D. Harrington, David Torrents and Peer Bork
Dynamic Transcription of Distinct Classes of Endogenous Retroviral Elements Marks Specific Populations of Early Human Embryonic Cells.
2015, Jonathan Go¨ ke, Xinyi Lu, Yun-Shen Chan, Huck-Hui Ng, Lam-Ha Ly,1 Friedrich Sachsand Iwona Szczerbinska
Regulation of the human endogenous retroviral Syncytin-1 and cell-cell fusion by the nuclear hormone receptors PPARγ/RXRα in placentogenesis.
2012, Matthias Ruebner, Manuela Langbein, Pamela L Strissel, Christine Henke, Doreen Schmidt, Tamme W Goecke, Florian Faschingbauer, Ralf L Schild, Matthias W Beckmann, Reiner Strick.
The Viruses That Make Us: A Role For Endogenous Retrovirus In The Evolution Of Placental Species.
2016, Luis P. Villarreal
Biology’s next revolution.
2007, Nigel Goldenfeld and Carl Woese
Retrovirus endógenos humanos: Significado biológico e implicaciones evolutivas.
2002, Carlos Sentís.
Virology: Bornavirus enters the genome.
2010, Cédric Feschotte.
The ancient virus world and evolution of cells.
2006, Eugene V Koonin, Tatiana G Senkevich & Valerian V Dolja
Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: A hypothesis for the origin of cellular domain.
2006, Patrick Forterre
Endogenized viral sequences in mammals.
2016, Nicholas F.Parrish1 & KeizoTomonaga.
Noncoding RNAs: Persistent Viral Agents as Modular Tools for Cellular Needs.
2009, Gunther Witzany.
Natural Genome-Editing Competences of Viruses.
2007, Günther Witzany.
The Viral Origins of Telomeres and Telomerases and their Important Role in Eukaryogenesis and Genome Maintenance.
2008, Günther Witzany.
Viruses are essential agents within the roots and stem of the tree of life.
2009, Luis P. Villarreal, Guenther Witzany
Did DNA Come From Viruses?
2006, Carl Zimmer
Virology: The gene weavers.
2006, Garry Hamilton.
A Genomewide Search for Ribozymes Reveals an HDV-Like Sequence in the Human CPEB3 Gene.
2006, Kourosh Salehi-Ashtiani et al.
Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes.
2010, Vladimir A. Belyi, Arnold J. Levine, Anna Marie Skalka.
Virus y ciclos biogeoquímicos terrestres.
Between a Rock and a Soft Place: The Role of Viruses in Lithification of Modern Microbial Mats.
2021, Richard Allen Blanco, Pieter T. Visscher, Brendan P. Burns.
Transfer of photosynthesis genes to and from Prochlorococcus viruses.
2004, Lindell D1, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW.
Virus may aid photosynthesis.
2005, Charles Choi
Photosynthesis genes in marine viruses yield proteins during host infection.
2005, Debbie Lindell et al.
Marine viruses and their biogeochemical and ecological effects.
1999, Jed A. Fuhrman
Sampling Natural Viral Communities from Soil for Culture-Independent Analyses.
2003, Kurt E. Williamson, K. Eric Wommack, and Mark Radosevich
Borgs are giant extrachromosomal elements with the potential to augment methane oxidation.
2021, Al Shayeb et al.
Sulfur Oxidation Genes in Diverse Deep-Sea Viruses.
2014, Karthik Anantharaman, Melissa B. Duhaime, John A. Breier, Kathleen Wendt, Brandy M. Toner, Gregory J. Dick
Metagenomic Analysis of Coastal RNA Virus Communities.
2006, Alexander I. Culley, Andrew S. Lang, Curtis A. Suttle.
Virus artificiales.
Unusual Features of the SARS-CoV-2 Genome Suggesting Sophisticated Laboratory Modification Rather Than Natural Evolution and Delineation of Its Probable Synthetic Route.
2020, Li-Meng Yan, Shu Kang, Jie Guan, Shanchang Hu.
The test-tube synthesis of a chemical called poliovirus: The simple synthesis of a virus has far-reaching societal implications.
2006, Eckard Wimmer.
The 1916 New York City Epidemic of Poliomyelitis: Where did the Virus Come From?
2011, H.V. Wyatt.
Immunization to Protect the US Armed Forces: heritage, current practice, and prospects.
2006, John D. Grabenstein, Phillip R. Pittman, John T. Greenwood1, and Renata J. M. Engler.
Engineered bat virus stirs debate over risky research.
2015, Butler Declan.
Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and mice.
2008, Becker MM, Graham RL, Donaldson EF, Rockx B, Sims AC, Sheahan T, Pickles RJ, Corti D, Johnston RE, Baric RS, Denison MR.
Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community.
2018, Jing Yana et al.